
JOURNAL OF MATERIALS SCIENCE 28 (1993) 4900-4903 

A theoretical upper limit to Coble creep strain 
resulting from concurrent grain growth 
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The rate of diffusional creep varies with grain size x, either as 1/x 2 or 1/x 3, depending on whether 
lattice or grain boundary diffusion is dominating. Since the rate of grain growth is proportional to 
1/x  ~, where p ~> 1, the creep and grain growth relationships can be combined to predict the 
transient creep that results from the two processes operating concurrently. An important result is 
obtained for grain boundary diffusion creep (Coble creep), where two regimes of behaviour are 
predicted depending on the value of p. For normal grain growth (p = 1) and up to a critical value 
p = 2, the transient gives rise to an upper limit to the grain boundary diffusional creep strain. For 
p > 2, no limiting strain is predicted. The role of the limiting strain is discussed in the context of 
the various experimental attempts that have been made to verify the Coble mechanism. 

1. Introduction 
Diffusional creep is often the predominant deforma- 
tion mode in fine-grained polycrystalline materials at 
low stress levels. When mass transport occurs by lat- 
tice diffusion, the creep rate is predicted by the 
Nabarro-Herr ing equation [1, 2]: 

~NH = BNHCY~D/x2kT (1) 

where c~ is the stress, fl the atomic volume, D the lattice 
diffusion coefficient, x the grain diameter, k the 
Boltzmann constant and T the absolute temperature. 
Byn is a numerical constant which depends on grain 
geometry. When mass transport occurs by grain 
boundary diffusion, the creep rate is predicted by the 
Coble equation [3]: 

ac = BcCr~Dg/x3kT (2) 

where Dg is the grain boundary diffusion coefficient 
and 8 the boundary width. Bc is a numerical constant 
which again depends on grain geometry. Both mech- 
anisms may be considered to act independently so that 
the overall creep rate is the sum of Equations 1 and 2, 
with one or the other providing the dominant contri- 
bution depending on grain size and temperature. Since 
Equation 2 has the stronger grain size dependence and 
the activation energy for boundary diffusion is less 
than that for lattice diffusion, Coble creep is predicted 
to dominate at lower temperatures and/or for fine 
grain size. 

Although it is almost 30 years since the Coble 
mechanism was proposed, there have been relatively 
few experimental verifications of it. Those experiments 
which do confirm the mechanism were performed 
mainly on highly sensitive specimen configurations, 
such as helically coiled wires, where the total strains 
were very small (e.g. [4-6]). One of the experimental 
difficulties is that concurrent grain growth tends to 
occur during the creep testing of materials with the 
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fine grain sizes necessary for Coble creep to dominate. 
The aim of this paper is to evaluate theoretically the 
influence of concurrent grain growth and to indicate 
the limitations imposed on the strain achievable by 
Coble creep. 

2. Concurrent grain growth during 
diffusional creep 

During normal grain growth the average grain size 
x of a material changes at a rate described by the 
relationship 

dx/dt = FM (3) 

where M = Dg/kT is the atomic mobility in the grain 
boundary and F is,the driving force, given by 

F = g (4) 

where 7 is the grain boundary energy. Integration of 
Equation 3 gives the normal grain growth law: 

where x0 is the grain size at t = 0. This time depend- 
ence of the grain size can be written in a form more 
convenient for incorporation into the creep equations 
as follows: 

x = Xo(1 +[3t) 1/2 (6) 

where [3 = 47~Dg/~x2kT. 
Consider first the case of Nabarro-Herring creep. 

From Equations 1 and 6, the creep rate varies with 
time according to: 

dg BNH C~ ~ D ~:o 
- ( 7 )  

dt x~(1 + ~t)kT 1 + ~t 
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This equation can be integrated with the conditions 
that g = 0 at t = 0, to give the dependence of strain 
upon time as follows: 

a0 
= ~- fin (1 + [30] (8) 

Alternatively, the creep rate can be expressed as 
a function of creep strain by combining Equations 
7 and 8. Thus 

= ~o exp(-e[3/~o)  (9) 

The Nabar ro -Her r ing  creep strain is thus predicted to 
vary logarithmically with time according to Equation 
8 and the rate to decrease exponentially with creep 
strain according to Equation 9. 

Consider next the case of Coble creep. The time 
dependence of the creep rate is obtained from Equa- 
tions 2 and 6 as follows: 

de _ Bc~5~SDg _ ao (10) 
d t  x g ( 1  +~t)3/2kT (1 +13 t )  3/2 

The dependence of strain upon time can be obtained 
by integration as before and this gives 

2k~ - ( 1  + [3t) -1/2] (11) 
a - 13 

The creep rate can be expressed as a function of the 
creep strain by combining Equations 10 and 11. Thus 

= ~o[1-(~13/2~o)] 3 (12) 

The 0behaviour predicted by Equations 11 and 12 for 
Coble creep is fundamentally different to the case for 
Nabar ro-Her r ing  creep. Equation 11 indicates that as 
t --* oo the strain tends to a limiting value given by 

2ko Bct3 t~ 2 
~lim - -  - -  (13) 
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Substitution of ~ = glim in Equation 12 confirms that 
the creep rate is zero at this limiting value. Noting that 
the expression for one elastic deflection is ~ = cy/G, 
where G is the shear modulus, and that 6 -~ 2b, where 
b is the atomic size, this enables ~l~m to be expressed as 
a function of an elastic strain. Also taking Bc = 16 [7], 
this gives 

~lim/Eel = 32Gb2/yXo (14) 

By using the values 7 = 0.5 N m  -1, G = 1011 N m  -2 
and b = 3 x 10- io m, the limiting strain can be evalu- 
ated as a function of Xo. For  a typical grain size of 
10 pm the limiting strain is less than 10% of an elastic 
deflection. 

The transient behaviour predicted above is shown 
graphically in Fig. 1 for a typical f.c.c, metal with an 
initial grain size xo = 10 x 10 -6 m at the homologous 
temperature T/Tm = 0.75. Other values used in 
calculating the curves were as follows: D = 5.4 
x 10 -5 exp(--18.4TIn~T)m 2 s -1 [8], 6Dg = 9.4 x 10 -15 
x e x p ( - l O T m / T ) m 3 s  -1 [8], k = . l . 3 8 x 1 0 - 2 3 N m  

K -z, Tm = 1356K, BSH = 10 and c~ = 1 0 M N m  -2. 
The strain is expressed as a fraction of an elastic 
deflection and the time is plotted in the dimensionless 
form k,,M/a~l, where g~.it is the initial creep rate (the 
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Figure 1 Variation of strain with time for a material undergoing 
concurrent  grain growth.  The strain is plotted in the normalized 
form s / s~  where se~ is an elastic deflection and the time is plotted in 
the dimensionless form ~n~tt/se~, where ~.~t is the initial creep rate. 

sum of the Nabar ro-Herr ing  and Coble con- 
tributions). It is clear that Coble creep dominates 
initially but decays more rapidly than N a b a r r o -  
Herring creep. The Coble contribution eventually 
saturates at a strain of about  0.06 of an elastic deflec- 
tion. It  is clear by inspection of Equations 1 and 2, that 
Nabar ro-Her r ing  creep rate dominates over the 
Coble rate when the grain size exceeds the critical 
value x = xcri~ = Bc~Dg/BNnD. From Equation 6, this 
occurs at a time [(x~rit/Xo) 2 - 1]/[3. 

3. Influence of a non-l inear grain growth 
law 

The above analysis is for the normal case where the 
rate of grain growth depends linearly on the product 
of the force and the mobility, when dx/dt  is propor- 
tional to 1 Ix. Under other circumstances, particularly 
when grain growth is impeded by the presence of 
boundary inclusions such as particles or voids, it can 
be more sensitive to grain size. A grain growth expres- 
sion of the following type is then often appropriate: 

dx/dt  = A / x  p (15) 

where the exponent p > 1 and A is a rate constant. 
The integrated form of this equation is given by 

x = Xo(1 + ~t) 1/(p+I) (16) 

where ~ = (p + 1)A/x p+I. Equation 16 can be sub- 
stituted into the creep rate Equations 1 and 2 as before 
and the resulting expressions can be integrated. 

For Nabar ro-Herr ing  creep, the dependence of 
strain upon time may then be derived as follows: 

- &~ + ~t) (p-1)/<p+I)- 13 (17) 
s = ( p  - 1) 

and the dependence of creep rate upon creep strain is 
given by 

[ l;~(p--[)] -2~(p-l) 
= ~o 1 + ~o(P +1) (18) 

The value of (p - 1 ) / ( p  + 1)in Equation 17 is always 
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positive for all values o f p  greater than unity. Thus, 
similar to the case of normal grain growth, the 
Nabarro-Herr ing creep strain is predicted never to 
reach a limiting value. 

For Coble creep, a corresponding derivation leads 
to equivalent expressions. Firstly for the strain-time 
dependence 

_  o(p + 1)I-(1 1, ] ~(p - 2)[_ + - 1 (19) 

and secondly for the dependence of creep rate upon 
creep strain 

e~(p -21~  - 3/(p-2) 
k = ko 1 +  ~-~-+ l )  J (20) 

In this case, two regimes of behaviour are revealed, 
depending on the value of p. When p < 2, the value of 
(p - 2)/(p + 1) is negative and a limiting Coble creep 
strain is predicted as for the case of normal grain 
growth. It is given by 

Elim = ~0(P - ' [ -1) /~(2  - p )  (21) 

When p > 2, the value of(p - 2 ) / ( p  + 1) is positive and 
no limiting strain is then predicted. 

Note that for the special case when p = 2, integra- 
tion of the creep rate-time expression gives a logarith- 
mic strain-time dependence and an exponential decay 
of creep rate with creep strain as follows: 

- ~A~ + 3 A t / x  3) (22) 

k = koexp( -3AE/~oX 3) (23) 

4. Discuss ion 
The novel feature revealed by the present analysis is 
the upper limit to Coble creep strain that is predicted 
for grain growth exponents in the range 1 ~< p < 2. 
The limiting strain can be small. For the numerical 
example given, it is less than one elastic deflection. In 
conventional uni-axial creep tests, the sensitivity of the 
extensometers may be insufficient to measure the 
strains with the accuracy required. There are two 
choices then available to the experimentalist intent on 
confirming the existence of Coble creep. The first is to 
use a more sensitive specimen configuration such as 
a helical spring. This enables tests to be performed 
relatively easily at small strains so that sufficient data 
points can be collected to determine the creep rate 
over a time scale in which grain growth is negligible. 
The other choice is to ensure that grain growth is 
impeded, for example by the presence of boundary 
particles or voids. The presence of such inclusions can 
lead to further difficulties however. Particles are 
known to inhibit diffusional creep as well as grain 
growth 1-9] so that their addition to stabilize the grains 
may totally inhibit diffusional creep in certain cases. 
In other cases, there may exist only a narrow range 
over which experiments can be performed, where there 
are sufficient particles present to stabilize the grain 
size but insufficient to inhibit creep. When voids 
or bubbles are present on grain boundaries, such as 
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sintering cavities in ceramic materials or fission gas 
bubbles in nuclear materials, these may suppress grain 
growth, but on the other hand, the diffusional growth 
or sintering of them may give rise to a creep strain of 
the same order as the Coble strain [10]. In such a case, 
it is then necessary to separate the two contributions 
to creep strain, for example by using density measure- 
ments. 

The present calculations emphasize the importance 
of taking account of concurrent grain growth in as- 
sessments of the creep behaviour of materials at low 
stress levels. This is particularly so in the case of Coble 
creep in materials where normal grain growth occurs. 
An upper limiting Coble strain might then exist. Since 
no limiting strain is predicted for Nabarro-Herr ing 
creep and the overall diffusional creep strain is equal 
to the sum of the grain boundary and lattice contribu- 
tions, it is clear that Nabarro-Herr ing creep will al- 
ways dominate eventually. 

5. Conclusions 
1. The transient diffusional creep that results from 

concurrent grain growth can be predicted by substitu- 
ting the grain growth expression into the diffusional 
creep equations. 

2. For grain boundary diffusional creep (Coble 
creep), the type of transient behaviour depends on the 
value of the exponent in the grain growth equation 
dx /d t  ~: 1Ix p. For 1 ~< p < 2 a theoretical upper limit 
to Coble creep strain exists, whose value can be less 
than an elastic deflection. When p >/2, no upper limit 
exists to the strain achievable. 

3. The existence of the limiting strain may impose 
a severe restraint on the possibility of detecting Coble 
creep by using conventional uni-axial creep testing. 

4. It may not be possible to extend the range of 
dominance of Coble creep by adding particles to sta- 
bilize the grain size, since these may cause a total 
inhibition of diffusional creep. 

5. In materials whose grain growth is impeded by 
voids or bubbles, the diffusional size-change of these 
may give rise to a strain contribution of the same 
order as that due to Coble creep. 

6. For lattice diffusional creep (Nabarro-Herring 
creep), no upper limit to the creep strain is predicted. 
Concurrent grain growth leads to a transient state 
where the rate decreases steadily with time. 
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